Memakai Local Regression Di R


Pada artikel sebelumnya, Memakai Linear Regression Di R, saya mencoba menerapkan linear regression di R. Saya menyebutnya klasik karena teknik tersebut sudah ada sejak lama dan dapat dihitung secara manual. Seiring dengan penggunaan komputer pada bidang statistika, muncul pula berbagai teknik baru yang menawarkan akurasi yang lebih baik. Salah satunya adalah local regression yang memakai algoritma k-Nearest-Neighbor sehingga memperhitungkan titik disekitar saat menghitung posisi sebuah titik. Karena perhitungan ini harus dilakukan pada setiap titik, satu-per-satu sepanjang grafis, local regression boleh dibilang mustahil diproses secara manual tanpa melibatkan komputer.

Sebagai contoh, saya akan memakai data pendapatan dan pengeluaran yang saya baca dengan perintah seperti berikut ini:

> data <- read.csv('finance.csv')
> names(data)
[1] "tgl"    "pendapatan"  "pengeluaran"
> ggplot(data, aes(tgl)) +
+ geom_line(aes(tgl, pendapatan, color='Pendapatan'), size=1) +
+ geom_line(aes(tgl, pengeluaran, color='Pengeluaran'), alpha=0.3) +
+ theme(legend.title=element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.title.y = element_blank()) +
+ scale_color_manual(values=c('Pengeluaran'='red', 'Pendapatan'='blue'))
Grafis pendapatan per tanggal

Grafis pendapatan per tanggal

Saya akan mencoba mencari persamaan yang paling mendekati untuk memetakan data pendapatan berdasarkan tanggal. Bila memakai simple linear regression, saya akan memperoleh hasil seperti berikut ini:

> grafis <- ggplot(data, aes(tgl,pendapatan)) + theme(legend.title=element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.title.y = element_blank()) 
> grafis + geom_line() + geom_smooth(method='lm')
Memakai linear regression pada penjualan per tanggal.

Memakai linear regression pada penjualan per tanggal.

Sekarang, bandingkan grafis di atas dengan versi polynomial regression yang saya buat dengan perintah berikut ini:

> grafis + geom_line() + geom_smooth(method='lm', formula=y~poly(x,5))
Memakai polynomial regression pada penjualan per tanggal.

Memakai polynomial regression pada penjualan per tanggal.

Versi yang memakai polynomial regression terlihat lebih baik, bukan? Agar lebih yakin, saya akan berusaha membuktikannya secara numeris. Walaupun polynomial regression tidak lagi linear, ia masih berbasis model linear sehingga teknik pada model linear masih dapat saya gunakan. Oleh sebab itu, saya melakukan perbandingan dengan memberikan perintah berikut ini:

> summary(lm(pendapatan ~ tgl, data=data))

Call:
lm(formula = pendapatan ~ tgl, data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-3217705 -1000690   -85050  1097801  3938758 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)  
(Intercept) 14408908.7  8270127.5   1.742    0.084 .
tgl             -652.6      520.4  -1.254    0.212  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1452000 on 122 degrees of freedom
Multiple R-squared:  0.01273,   Adjusted R-squared:  0.004635 
F-statistic: 1.573 on 1 and 122 DF,  p-value: 0.2122

> summary(lm(pendapatan ~ poly(tgl,5), data=data))

Call:
lm(formula = pendapatan ~ poly(tgl, 5), data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-2950460  -740133  -158111   612332  2881061 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)    4038452      99700  40.506  < 2e-16 ***
poly(tgl, 5)1 -1820799    1110207  -1.640    0.104    
poly(tgl, 5)2 -9361247    1110207  -8.432 9.73e-14 ***
poly(tgl, 5)3  -682886    1110207  -0.615    0.540    
poly(tgl, 5)4  1404591    1110207   1.265    0.208    
poly(tgl, 5)5  4652563    1110207   4.191 5.40e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1110000 on 118 degrees of freedom
Multiple R-squared:  0.4416,    Adjusted R-squared:  0.418 
F-statistic: 18.67 on 5 and 118 DF,  p-value: 1.247e-13

Pada hasil di atas, terlihat bahwa versi yang memakai simple linear regression memiliki nilai R-squared hanya sebesar 1,2%. Sementara itu, versi yang memakai polynomial regression memiliki nilai R-squared sebesar 41,8%. Ini adalah perbedaan yang cukup besar!

Tentu saja saya tidak bisa begitu saja memprediksi pendapatan berdasarkan tanggal (terlihat dari p-value). Hal ini ditambah lagi dengan penggunaan persamaan polynomial yang bisa membisa memberikan hasil yang tak terduga. Misalnya, prediksi pendapatan untuk bulan Desember adalah:

> cbind(predict(f,data.frame(tgl=c(seq(as.Date('2014/12/01'), as.Date('2014/12/10'), 'day')))))
       [,1]
1  10171185
2  10307194
3  10444780
4  10583953
5  10724726
6  10867108
7  11011112
8  11156748
9  11304028
10 11452963

Wow, pendapatan meningkat secara drastis! Tapi saya tidak bisa bahagia karena ini kemungkinan besar disebabkan oleh kesalahan model (atau memang efek akhir tahun, ya?🙂 )

Sekarang, saya akan menggunakan teknik local regression pada data yang sama. Grafis berikut ini memperlihatkan geom_smooth() yang menggunakan method loess:

> grafis + geom_line() + geom_smooth(method='loess')
Memakai local regression dengan nilai alpha = 0.75

Memakai local regression dengan nilai alpha = 0.75

Sebagai informasi, method geom_smooth() dari package ggplot2 secara otomatis akan memakai method loess bila n < 1000. Berdasarkan Wikipedia, LOESS adalah semacam singkatan dari “LOcal regrESSIon”. Grafis yang dihasilkan terlihat lebih lembut bila dibandingkan dengan versi yang memakai polynomial regression. Pada local regression, terdapat nilai alpha yang disebut sebagai smoothing parameter. Grafis di atas memakai dengan nilai default alpha berupa 0.75. Saya dapat menggunakan nilai alpha yang berbeda dengan perintah seperti berikut ini:

> grafis + geom_point() + geom_smooth(method='loess', span=0.25)
Memakai local regression dengan nilai alpha = 0.25

Memakai local regression dengan nilai alpha = 0.25

Saya dapat melakukan fitting yang memakai local regression dengan perintah seperti berikut ini:

> f <- loess(pendapatan ~ as.numeric(tgl), data, span=0.25)

Pada perintah di atas, saya perlu menggunakan as.numeric() untuk menerjemahkan Date menjadi angka agar dapat dihitung. Btw, pada saat memakai geom_smooth() dalam menampilkan grafis, saya tidak perlu melakukan konversi karena hal ini telah dilakukan secara otomatis dimana tanggal diterjemahkan menjadi angka pada sumbu X.

Local regression tidak mengenal nilai seperti R-squared karena ia lebih berguna sebagai model untuk explorasi ketimbang sebagai model prediksi. Hal ini cukup masuk akal karena local regression sangat bergantung pada titik-titik yang sudah disekitarnya. Cara yang paling efektif untuk melihat keakuratan local regression adalah dengan mengamati grafis yang dihasilkan olehnya secara seksama. Walaupun ada function predict() untuk local regression, saya hanya bisa menggunakannya untuk nilai tgl yang sudah ada dan bukan untuk tgl di-luar sampel:

> x.prediksi <- as.numeric(seq(as.Date('2014/12/01'), as.Date('2014/12/10'), 'day'))
> cbind(predict(f, data.frame(tgl=x.prediksi)))
   [,1]
1    NA
2    NA
3    NA
4    NA
5    NA
6    NA
7    NA
8    NA
9    NA
10   NA
> x.prediksi <- as.numeric(seq(as.Date('2013/12/01'), as.Date('2013/12/10'), 'day'))
> cbind(predict(f, data.frame(tgl=x.prediksi)))
      [,1]
1  5617313
2  5627744
3  5637711
4  5647098
5  5655790
6  5663674
7  5670634
8  5676556
9  5681326
10 5684828

Dengan demikian, local regression lebih tepat dipakai untuk mempelajari hubungan antar-variabel dimana hubungan tersebut sangat kompleks dan tidak dapat dijelaskan oleh model yang sudah ada.

Perihal Solid Snake
I'm nothing...

One Response to Memakai Local Regression Di R

  1. Ping-balik: Melakukan Unsupervised Learning Dengan R | The Solid Snake

Apa komentar Anda?

Please log in using one of these methods to post your comment:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: